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In the quest for a physically more realistic transition criterion, the prechaotic 
bifurcation behaviour of plane Poiseuille flow is studied. Various classes of nonlinear 
time-periodic equilibrium solutions are computed via Keller’s pseudo-arclength 
continuation method. In particular, attention is focused on three-dimensional 
nonlinear travelling-wave type secondary bifurcation branches. These saturated 
equilibrium states originate on the nonlinear primary bifurcation surface from 
neutral, phase-locked secondary instability modes. Taking advantage of symmetries, 
only those nonlinear secondary branches which correspond to symmetric and 
antisymmetric linear secondary instability modes are investigated. 

It appears that a new family of secondary bifurcation solutions which contains only 
even spanwise Fourier modes is particularly important. Dominated largely by the 
spanwise (0,2) mode and discovered by investigating bicritical secondary bifur- 
cations, the mean quantities of these solutions show a certain resemblance to those 
observed in transitional flow during the ‘spike ’ stage. The friction factor of this new 
solution branch is in the experimentally observed range and the critical Reynolds 
number, defined with the mean flow velocity, is reduced to about 1000 in general 
agreement with experiments. 

1. Introduction 
The transition from smooth and steady laminar flow to the random and chaotic 

motion of turbulent flow is one of the central problems in fluid mechanics. The 
transition problem became of increased practical importance for the design of a 
laminar flow controlled (LFC), swept-wing transport aircraft. By delaying boundary- 
layer transition, considerable performance increases can be achieved. Prerequisite for 
such an advanced design is an in-depth understanding of the underlying physical 
process together with a reliable and accurate method for predicting laminar/ 
turbulent transition with and without LFC. Carefully conducted experiments as 
well as the use of high-speed computers significantly advanced our understanding of 
this fascinating phenomenon as can be seen from the overviews by Tani (1969), 
Stuart (1974, Reshotko (1976), AGARD-CP-224 (1977), Morkovin (1988), Herbert 
(1988) and Reed & Saric (1989), as well as the proceedings of the IUTAM symposia 
on laminar-turbulent transition. 

However this rather detailed understanding of the transition process has not yet 
been incorporated in design-type transition prediction methods. Essentially all 
engineering transition prediction methods presently in use are based upon linear 
primary instability in conjunction with a correlation of transition information 
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obtained from experiments (so-called eN methods, cf. Bushnell, Malik & Harvey 
1989). Used with care, these semi-empirical prediction methods seemingly work quite 
well in many situations of engineering interest. Although transition is a nonlinear 
process, apparently the very rapidity of this nonlinear process allows the neglect of 
nonlinearity in these situations, being the reason behind the success of the eN 
approach in low-disturbance environments. However, besides providing little 
physical insight, the failure of these semi-empirical methods in cases where the linear 
stage is bypassed, such as Poiseuille flow, makes their application to new design 
situations hazardous unless backed up by extensive experimental data. Therefore, a 
physically more rational transition prediction method, which includes bypass 
situations and does not require empirical constants, is one of the main goals of 
present-day transition research. 

The object of this investigation is to study the prechaotic bifurcation behaviour of 
strongly nonlinear, wavelike (i.e. time-periodic) equilibrium solutions for the model 
problem of plane Poiseuille flow. In particular we hope to find some clues as to 
whether these solutions can be related to the advanced stages of transition and 
therefore could be used for transition prediction in engineering problems. At the 
same time our strongly nonlinear solutions elucidate the validity and interrelations 
between various weakly nonlinear models and offer a possible explanation for the 
drag reducing effect of riblets. While the ultimate goal of finding a, better transition 
criterium is not achieved in this paper, a new class of secondary bifurcation solutions 
containing only even spanwise modes brings the critical Reynolds number as well as 
the friction factor into the experimentally observed range. 

1.1.  Historical background ; weakly nonlinear theories 
Osborne Reynolds attributed laminar/turbulent transition to an instability of the 
flow. The theoretical development of classical linear primary stability theory, initiated 
by Rayleigh, Kelvin and Helmholtz for inviscid flows and extended to viscous flows 
by Orr and Sommerfeld is nicely summarized in the monograph of Drazin & Reid 
(1981). The theoretical predictions of Tollmien (1929) and Schlichting (1933) of 
travelling instability waves in the Blasius boundary layer were confirmed beautifully 
by the landmark experiment of Schubauer & Skramstad (1947). Discrepancies 
between linear stability results and experimentally observed transition were 
attributed to nonlinear effects. Because two-dimensional TollmienSchlichting (TS) 
waves experience amplification a t  the lowest Reynolds number (cf. Squire 1933), 
historically nonlinear extensions centred on two-dimensional waves. Using an 
amplitude expansion technique, Stuart (1960) and Watson (1960) formally derived 
Landau’s equation as the equation governing the temporal evolution of weakly 
nonlinear two-dimensional disturbances near the critical point (compare also 
Stuart’s 1971 review). 

A critical survey of the various weakly nonlinear two-dimensional amplitude 
expansion methods has been given by Herbert (1983), who also demonstrated the 
disappointingly limited range of validity of these amplitude expansions for the 
example of plane Poiseuille flow in his earlier paper (cf. Herbert 1980). Therefore, in 
the opinion of the present authors the main value of these weakly nonlinear theories 
appears to be the accurate prediction of the local bifurcation behaviour, in particular 
whether the bifurcation is supercritical or subcritical. 

On the other hand, experimental investigations of Klebanoff, Tidstrom & Sargent 
(1962) clearly demonstrated that the linearly most amplified two-dimensional TS 
waves quickly became three-dimensional, forming aligned A-shaped vortical patterns 
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before the fully turbulent stage was reached. To explain this observed peak-valley 
splitting of what is now known as harmonic or K-type transition, Benney & Lin (1960) 
and later Benney (1964) proposed weakly nonlinear interactions between a two- 
dimensional TS wave (a, 0) and two non-resonant oblique waves (a, +p). Here a and /3 
denote the streamwise and spanwise wavenumbers. Aside from some debatable 
assumptions regarding the phase, this model provided no selection mechanism for 
the preferred spanwise periodicity of the streamwise vortices. To remedy this, Craik 
(1971) introduced his resonant triad model which exploits the resonance between a 
two-dimensional TS wave (a,O) and two subharmonic oblique waves (h, +p) (see 
also Craik’s 1985 monograph). This resonance model did not apply to the 
experimental situation of Klebanoff et al. (1962) but found revived interest with the 
experimental verification of the subharmonic route to transition in boundary layers 
by Kachanov & Levchenko (1984) or Saric & Thomas (1984). 

In contrast to the above-cited weakly nonlinear three-dimensional models, 
Dhanak (1983) studied finite-amplitude disturbances in the form of standing waves 
in a spanwise direction. These are expansions about the linear three-dimensional 
neutral surface and can be linked to the superharmonic resonance between a two- 
dimensional wave ( 2 4  0) and two oblique waves (a, +p) on the neutral surface. We 
shall use Dhanak’s (1983) results for comparison with our strongly nonlinear three- 
dimensional solution of $3.3. 

Undoubtedly one of the great achievements of theoretical transition research 
during the past decade has been to recognize that the rapid growth of the three- 
dimensional waves is due to a linear secondary instability of the two-dimensional 
primary waves after having reached a certain threshold amplitude (cf. Orszag & 
Patera 1980, 1983; Herbert 1981, 1988). Originating from parametric resomnce of a 
periodic flow, secondary instability appears to be a generic mechanism in shear flows 
and the different types of parametric resonance can explain the different routes to 
transition (see Bayly, Orszag & Herbert 1988 or Herbert 1988). However, it should 
be emphasized that, although linear secondary stability theory correctly describes 
the onset of transition, it fails to provide a transition criterion unless experimental 
information is added or nonlinear effects are included. Such a weakly nonlinear 
secondary instability model has been proposed by Crouch & Herbert (1986) and 
according to the authors it describes the evolution of disturbances up to the single- 
spike stage showing some potential for a rational transition prediction. Our main 
results of $4 are also concerned with such secondary bifurcation branches and we 
shall see that some lead to a considerable reduction of the critical Reynolds number 
in agreement with experimental observations. 

1.2. Strongly nonlinear computations 
The development of new computational methods, in particular spectral methods (see 
Canuto et al. 1988), as well as advances in high-speed computers, made it possible to 
perform accurate, time-dependent numerical simulations of the transition process for 
simple model problems. The high-resolution simulations of Kim, Moin & Moser (1987) 
or Gilbert (1988) for plane Poiseuille flow are impressive examples of the wealth of 
information that can be obtained in this way (see also the review by Kleiser & Zang 
1991). Even more astonishing are Rozhdestvensky & Simakin’s (1984) findings, 
extending earlier simulation results of Orszag & Patera (1980, 1983), that a low- 
resolution simulation already closely approximates several overall quantities of 
engineering interest, such as the friction factor or the mean velocity profile. It 
appears that in flows which are dominated by large-scale coherent structures, the 
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latter are adequately taken into account by such low-resolution models. This would 
also explain the success of Liu’s (1989) highly truncated nonlinear wave-envelope 
method, which can be regarded as a large-amplitude extension of several weakly 
nonlinear models. Apparently these solutions, obtained by Fourier truncation, have 
a much larger region of convergence than those based upon amplitude expansions 
(compare for example Herbert 1980 or Sen & Venkateswarlu 1983). 

The strictly parallel basic state of plane Poiseuille flow, which according to linear 
theory is convectively unstable (cf. Deissler 1987), admits solutions which are periodic 
in the streamwise and spanwise directions and much theoretical work has been 
expended on studying the stability of this simple flow. Therefore it constituted a 
milestone in transition research when, analogous to Schubauer & Skramstad’s (1947) 
boundary-layer experiment, Nishioka, Iida & Ichikawa (1975) confirmed exper- 
imentally the results of linear and weakly nonlinear stability theory for this highly 
subcritical flow. Their investigation showed a close similarity between ribbon- 
induced transition in plane Poiseuille and boundary-layer flow, hereby firmly 
establishing plane Poiseuille flow as an important model problem for the study of 
wall-bounded shear flows. 

An alternative to the evolutionary initial-value approach is a global numerical 
bifurcation analysis in the parameter space which will be employed in the present 
investigation. Such an approach has been applied frequently to closed flow systems 
such as Taylor-Couette or Rayleigh-BBnard flow (cf. for example Meyer-Spasche & 
Keller 1980 or Schrauf 1986). Starting with a known solution and using continuation 
methods (cf. Keller 1977 ; Doedel 1981 ; KubiEek & Marek 1983 or Jepson & Keller 
1984), one computes the bifurcating branches of a certain solution class (usually 
steady or time periodic solutions). Naturally, these solutions fall short of reaching 
the chaotic end states obtainable by evolutionary numerical simulation. However, 
for closed flow systems, several of these intermediate equilibrium states are stable 
and can be observed experimentally. Contrary to this, most of the intermediate states 
of open flow systems seem to be unstable and therefore are not observed in 
experiments or cannot be computed easily by time-dependent numerical simulation. 
Nevertheless, these unstable intermediate solutions provide a highly useful insight 
into the transition process, as exemplified by secondary bifurcations in shear flows 
(cf. Herbert 1991). Furthermore, there is increasing evidence that these intermediate 
states might be related to the coherent structures observed in transitional and 
turbulent flows (cf. Saffmann 1983, who termed these intermediate solutions 
‘vortical states ’, or Liu 1989). Speaking in terms of dynamical systems theory, these 
coherent structures can be thought of as being lower-dimensional manifolds in whose 
neighbourhood the dynamical system spends a substantial fraction of time (Jimbnez 
1987a). If the flow is controlled by large-scale structures it is only natural to 
hypothesize (cf. Koch 1988) that mean quantities of engineering interest might be 
determined accurately enough by these intermediate solutions to allow a physically 
more rational prediction of transition. 

Similar to the time-dependent simulations, progress in numerical bifurcation 
theory mirrors the advances in numerical methods as well as computer technology. 
This is particularly evident from the few results for plane Poiseuille flow, our open 
flow system model. Based upon the asymptotic approach of Meksyn & Stuart (1951) 
and Meksyn (1964), Grohne (1969) and Zahn et al. (1974) seem to have been the first 
to tackle this problem numerically. They used finite-difference methods just as 
Milinazzo & Saffman (1985) did later on. Using spectral methods, Herbert (1977) as 
well as Orszag & Kells (1980), Orszag & Patera (1983) and Pugh (1987), achieved high 
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FIGURE 1. Plane Poiseuille flow geometry. 

accuracy by keeping several streamwise harmonics. Most of these computations were 
for two-dimensional disturbances. Employing the mean-field approximation Grohne 
(1969) and Zahn et al. (1974) also reported limited results for three-dimensional 
disturbances. These three-dimensional calculations were continued by Pugh (1987), 
Koch (1988) and Ehrenstein & Koch (1989) with the particular goal of computing 
secondary bifurcation equilibria. 

The present paper summarizes and extends the results reported in Ehrenstein & 
Koch (1989) and is organized as follows. Section 2 contains the governing equations 
and an outline of the numerical method of solution. After a brief review of three- 
dimensional linear and two-dimensional nonlinear primary instability, new nonlinear 
three-dimensional primary bifurcation results are compared with weakly nonlinear 
computations in $3. Section 4 contains a selected overview of linear secondary 
instability results and then focuses on two families of nonlinear wavelike secondary 
bifurcation solutions. Finally, some conclusions are drawn in $5 with a speculative 
comment about a possible connection between the discussed secondary bifurcation 
solutions and drag reducing riblets. 

2. Governing equations and method of solution 
2.1. Governing equations 

The flow of an incompressible viscous fluid of constant density p* between two 
parallel plates and driven by a pressure gradient is governed by the Navier-Stokes 
equations. By convention all quantities are non-dimensionalized with the maximum 
laminar velocity Ug,, at midchannel (see figure 1), the channel half width h* and the 
(constant) kinematic viscosity v*. Then v = (u, 21, w )  = v * / U ~ , ,  and p = p*/(p*Ugi , )  
are the dimensionless velocity and pressure respectively, x = (2, y, x )  = x*/h* denotes 
the Cartesian coordinates in the streamwise, normal and spanwise direction, with the 
corresponding unit vectors ( i , j , k )  and Re = U*,,,h*/v* is the Reynolds number. 
Furthermore o = (6, r ] ,  6)  = V x v denotes the vorticity vector and a streamfunction 
vector 

To allow a better comparison with weakly nonlinear theories it is customary to 
write 

can be introduced by u = V x y .  

v ( x ,  y, 2 ,  t )  = U(y) i + m G  y, 2 ,  t ) ,  
p ( z ,  y, 2 ,  t )  = P ( 4  + qw, y, 2 ,  t ) ,  

o(2, y, 2 ,  t )  = Q(y) k + a x ,  y, z , t ) .  
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Here U(y) = 1-y2, P ( x )  = -2x/Re and Q(y) = 2y describe the steady laminar flow 
and all disturbance quantities are marked by a tilde. E is an amplitude which can be 
large and will be specified later by a normalization condition. Since we are interested 
in travelling-wave type solutions it is advantageous to  transform the equations of 
motion into a frame of reference moving with the (unknown) wave speed C in the x- 
direction, i.e. x' = x-Ct, y' = y, z' = z, t' = t and dropping the prime from now on. 
I n  our treatment we chose the normal velocity v" and the normal vorticity i j  as 
independent variables such that the governing equations can be written in the form 

ax Re 

+ e  -[(s.v)~-(~.v)8]--~(5.v)i-(6.v)~]} a = 0,  ( 1 )  { :x az 

aa ( 6 . V )  q = 0. 

To specify the solution uniquely, usually the pressure gradient (or equivalently the 
wall shear stress) or the mass flux is held constant (cf. Saffmann 1983 or 
Rozhdestvensky & Simakin 1984). For laminar flow both formulations are identical, 
but different results are obtained in transitional or turbulent flow. I n  our work we 
have chosen the constant pressure gradient formulation, i.e. Re = Re, = Uz,.., h*/v*, 
in order to  allow a better comparison with most previous publications even though 
in experiments in general the constant flux formulation Re = ReQ = UzaxQ h*/v* is 
realized. To complete the formulation of our model problem we impose the no-slip 
boundary condition 

5 ( x , y = f l , z , t )  = o ,  
on the bounding sidewalls. 

2.2. Modal expansions and symmetries 
As mentioned before we are interested in travelling-wave type equilibrium solutions. 
In  the frame of reference moving with the wave these solutions are stationary, i.e. 
a/at = 0. Furthermore, plane Poiseuille flows allows solutions which are periodic in 
the streamwise and spanwise directions and therefore can be expressed in terms of 
the modal expansion 

Substituting (3) into the basic equations (1) and ( 2 )  we obtain for the (n, m)th Fourier 
component (with a/at = 0) 

HereD,,, = d2/dy2 - k;,, k;, = (na)2  + (m/3)" The linear part of (4) (i.e. E = 0) is the 
well known Orr-Sommerfeld equation for oblique waves while the linear part of ( 5 )  



Three-dimensional wavelike equilibrium states 117 

is the vertical vorticity or Squire equation. The remaining parts contain the 
nonlinear convolution terms which can be written in the form (cf. Ehrenstein & Koch 
1989) 

with K ,  = (vl-pk)a/3 and K ,  = (vka2+plp). In deriving these equations we made 
use of the relations 

i n m  = i(nold',m/dy-m/3~nm)/kim, 
d , m  = i(mSd',m/dy+nu~,m)/k~m' 

trim = i(nu dQ,,/dy+ rn/3d2dnm/dy2)/kim - im/3dnm, 
inm = i(rn/3dQ,,/dy-nad28,,/dy2)/k~, +inav",,, 

which can be obtained from the definition of the vorticity vector together with the 
continuity equation. 

Reality of the solution implies 
- - - - 

V-n,-m - Vm,m,  a - n . - m  - Wn,mp 

such that only the modes n 2 0 need to be considered (barred quantities denote the 
complex conjugate). Allowing only standing waves in the spanwise direction one can 
impose the rejlectional symmetry 

{Q( - z ) ,  ?7( - z ) ,  a( -2)) = {Q( + z ) ,  ?7( + z ) ,  -6( +z) } .  

This way one has to solve only for the modes n 2 0, m 2 0. These conditions imply 
that (or n > 0 and m = 0, Q,,, = 0 and for n = 0 and > 0, fro,,, (together with dOsm 
and go:,,,) is real and Q,,, (together with do,m and &,) is purely imaginary. For 
n > 0 and m = 0, (5 )  is identically satisfied, while for n = 0 and m > 0, (4) is purely real 
and ( 5 )  is purely imaginary. For n = 0 and m = 0 both equations (4) and ( 5 )  are 
satisfied identically and one has to use the x-momentum equation together with the 
constant pressure gradient constraint to obtain 

where a,, denotes Kronecker's symbol. 
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The special treatment of the (0,O)-term requires an explicit separation of those 
convolution terms containing zi,,, i.e. 

u--w p--w u--w p--m 

Here Z'' denotes the sum without the (0,O)-terms and 

B::~ ;,, , +N,~s , ; . ,  = - + nazi,, + [ mp-- dinm n d n ,  m ~ n m ] }  3 

k n m  dY 

NEQm;O,o+N!Qo;n,m = 1 nauoo~nm+mp-finm . .i A * dQoo dY 1 
Finally the modal no-slip boundary conditions are 

d6nm (n, m) * (0,O) : Gnm(y = f 1) = ~ (y = k 1 )  = ' inm(y  = f 1) = 0, 
dY 

(n ,  m) = ( 0 , O ) :  zi,,(y = & 1) = 0. 

A further reduction of the nonlinear system can be achieved by taking into account 
symmetry properties of the modal equations (a), (5 )  and (6) as well as their solutions. 
Denoting the modal equations (4) and ( 5 )  with ( n , m )  + (0 ,O) by F:: and FEZ 
respectively, and equations (6) by Foo, these equations are functions of the modal 
solution vector u = (do,, B,,, inm), (n ,  m )  + (0,O) and the parameter vector It = (a,P, 
Re). Then we can define a four-element symmetry group rconsisting of the operators 
I, S, T and S-T (I is the identity operator) acting on the solution vector and the 
modal equations as follows : 

SZi,, = Q,,, SF,, = Foo, 
S6,, = ( -  l)"V",,, 

S i n m  = ( -  l)m$nm, 

SF:: = ( -  l)mFoS nm 9 

SF;$ = ( -  l)mF:z, 
T.li,,(Y) = 4 l o (  - Y ) l  TFcJ,(Y) = Foe( -?h 

TBflm(y) = ( -  l)flfm+16nm( -y), T F : i ( y )  = ( -  l )n+m+lF:i(  -y), 
n+m * T i n m k )  = ( -1 )  v n m ( - y ) ,  TFE$(y) = ( - l ) n + m F : $ ( - ~ ) .  

F[u,It] = 0,  

Writing the modal equations (4), ( 5 )  and (6) formally as 

we showed in Ehrenstein & Koch (1989) that  this system is equivariant (i.e. 
preserved) under the action of the group r defined above, i.e. 

F[yu,  4 = yF[u ,  4 ( y e n .  
The importance of symmetries and the corresponding equivariance properties in 
bifurcation problems has been emphasized by Golubitsky, Stewart & Schaeffer 
(1988). The above-stated symmetry properties enable us to consider separately 
symmetric nonlinear solutions of the form 

{v"% ( - Y) 9 &L ( - Y) 9 t:L ( - Y)} = ( - 1 ) ""{v"% ( + y ) 9 !&L ( + y) , t2L ( + y )> 9 

{ z i ~ ~ ( - y ) , ~ : ~ ( - y ) , ~ ~ ~ ( - y ) }  = ( -  l )n{q%(+y) ,  q L ( + y ) , i % ( + y ) > ,  
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and antisymmetric nonlinear solutions of the form 

@?A( -?A -&A( - Y), 6% -!I)> = ( - 1 )n+m+l @?A ( + y), &A( + y), &A( fy)}, '1 
W?A(-y), 6?A( -Y) , i ?A( -Y) l  = ( - l ) " + * { ~ ~ A ( + y L  6?A(+Y), i?A(+Y)}. j  (8) 

The solutions defined by (7)  are invariant according to the operator S - T  while the 
solutions defined by (8) are invariant according to T. In our present investigation we 
do not consider asymmetric nonlinear solutions, being those which do not satisfy (7) 
or (8). We shall see that the symmetric and antisymmetric linear secondary 
instability modes discussed by Herbert (1984) are special cases of the above nonlinear 
solutions for m = 1. For the two-dimensional problem, m = 0, Herbert (1977) has 
already demonstrated the existence of symmetric and antisymmetric nonlinear 
solution branches which reduce to the corresponding symmetric and antisymmetric 
linear primary instability modes. 

By considering only the above-defined symmetric and antisymmetric nonlinear 
solutions we may limit our computations to the half channel 0 < y < 1 by replacing 
the no-slip boundary conditions at  y = - 1 by the relevant symmetry conditions at  
y = 0. To fix the amplitude and the phase of the solution we apply in general the local 
normalization 

Only if Gl0 is identically equal to zero, as is the case for the nonlinear three- 
dimensional primary instability branch, do we use the alternative normalization 

Gl0(Y = 0) = 1. (9) 

GI1(y = 0) = 1. 

2.3. Numerical solution procedure 
For the numerical computation the modal expansion (3) is truncated at n = N ,  
m = M .  ioo(y) as well as each Fourier component Bnm(y) = {Gnm(y), i jnm(y)}, (n, m) + 
(0,O) is expanded into a Chebyshev series 

2K-1 

in,(?/) = c akTk(y ) ,  
k-0 

truncated at 2 K -  1 for the full-channel problem. Here Tk(y) = cos (k cos-' y) is the 
kth-order Chebyshev polynomial. If only half the channel is used, the corresponding 
components are expanded in terms of even and odd Chebyshev polynomials (see 
Ehrenstein & Koch 1989) 

K-1 K-1 

k-0 k-0 
d n m ( y )  = u2k T2k(y), B n m h )  = a2k+1T2k+l(y)> 

truncated at K -  1. doo(y) as well as each Fourier component Bnm(y) is then evaluated 
at the 2K (full-channel problem) collocation points y, = cos [jn/(2K- l)], j = 0,1, . . ., 
2K - 1. Writing 

400, = dOo(yj) Bnmj = Bnm(yj )  (j = 0,1, a * * ,  2K- 11, (10) 
for the unknown functions at  the 2K collocation points, the pth derivative 

B%, = dP Bnm(Y)/dyPlv-a/j 
can be computed from Brim, by means of the collocation matrix method (cf. Gottlieb, 
Hussaini & Orszag 1984), i.e. 
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with DjE) = (Djk)P. The derivative matrix D,k has been derived in Gottlieb et al. 
(1984) and the corresponding symmetric and antisymmetric derivative matrices for 
the half-channel problem with K collocation points are simply 

Instead of replacing suitable rows in the discretization matrix, as suggested by 
Gottlieb et al. (1984), we imposed the boundary conditions by following a method of 
Ehrenstein (1988) which eliminates spurious (unstable) modes. 

Substituting (10) and (11) into the normalization condition (9) as well as into the 
modal equations (4), (5) and (6), and satisfying the latter at each collocation point, 
a large system of nonlinear algebraic equations results which is of the form 

F(u; A )  = 0. (12) 

The solution vector u is now defined by 

with 0 < n < N ,  0 < m < M but (n, m) + (0,O) and 0 < j < 2K- 1 for the full-channel 
problem or 0 < j < K -  1 for the half-channel problem. Note that, the wave speed C 
is part of the solution vector u. It  denotes the parameter vector (a, b, Re). Starting 
with a known solution u(Ao) the nonlinear algebraic system (12) is solved by 
Newton-Raphson iteration in conjunction with Keller’s (1977) pseudo-arclength 
continuation procedure. At  a simple bifurcation point, signalled by a sign change of 
the Jacobian determinant, a local bifurcation analysis provides the initial estimate 
for the solution on the bifurcating branch. 

In Keller’s (1977) pseudo-arclength continuation procedure a parameterizing 
equation of the form 

N(u,A,s) ~ ( u ( s ) - u ( s ~ ) ) ~ u / ~ ~ ( s ~ )  +(1-8) ( A ( s ) - A ( ~ ~ ) ) ~ A / ~ s ( s ~ ) - ( s - s ~ )  = 0, 

is added to the system (12). Here s can be thought of as an arclength along the 
solution curve with so denoting the previously computed point. The tuning factor 
0 < 8 < 1 allows us to place different emphasis on the solution vector u and the 
branching parameter A ,  keeping all other control parameters fixed. This extended 
system comprising F(u, A )  and N(u,  A,  s) avoids the singularity of ordinary parameter 
continuation at a turning (limit) point of the solution curve. 

2.4. Quantities of physical interest 
The amplitude E is defined once we specify the normalization condition (9). However, 
instead of E it is customary to use as a scalar measure of nonlinearity the total 
fluctuation energy E of the harmonic modes, normalized with the energy of the 
laminar flow U(y), i.e. 

In order to compare our constant pressure gradient solution with experimental 
results we need to know ReQ, or better ReQrn = U z  h*/v* the Reynolds number defined 
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with the average velocity U z  across the channel. This average velocity can easily be 
found by integrating the mean velocity profile u,(y) 

Urn(y) = U(Y)  goo(^), 
which at  the same time gives an indication of the deviation from the parabolic 
laminar profile U(y) .  For laminar flow Re, = ReQ = $ReQm. 

Of prime importance for engineering applications is the local friction factor cf 
which is generally defined as the ratio of the mean wall shear stress to the dynamic 
head of the flow, i.e. 

In channel flow the mean wall shear stress can be related to the average pressure 
gradient (cf. Schlichting 1958), 

dp* cfp*Uzz 
dx* h* 2 a 

-- = -- 

With dp*/dx* being constant and equal to the laminar pressure gradient, one finds 

cf = 9Re,/Re& 

which for laminar flow reduces to cf  = 9/Re,  = 9/ReQ = 6/Reo,. 

3. Wavelike primary bifurcation solutions 
To start the pseudo-arclength continuation procedure we need a known solution. 

In general this known solution is a wave-like primary bifurcation solution which 
originates from the steady laminar solution via Hopf bifurcation. In this section we 
review briefly the linear and nonlinear primary bifurcation stage and extend the 
nonlinear equilibrium solutions to three dimensions allowing a comparison with 
Dhanak’s (1983) weakly nonlinear three-dimensional theory. To help the reader 
distinguish the various solution branches figure 2 displays the corresponding modal 
patterns in the (n ,  m )  Fourier plane. At the same time the main truncations used in 
the present paper are indicated by the cross-hatched area. 

3.1. Neutral three-dimensional linear disturbances 
The linear, neutral primary instability surface of plane Poiseuille flow, depicted in 
figure 3, is a well-known result of classical hydrodynamic stability theory (see Drazin 
& Reid 1981) and corresponds to the modal pattern (a)  or (b)  in figure 2.  It is obtained 
by solving (4) and ( 5 )  linearized about 8 = 0 with n = m = 1 and real a, p and C .  The 
spectrum of the corresponding eigenvalue problem is known to be discrete and 
complete and at  most one symmetric (wall) eigenmode can become unstable. Orszag 
(1971) computed the critical condition as Recrit = 5772.22, acrit = 1.02056 and 
Ccrit = 0.26400174 which according to Squire’s (1933) theorem is two dimensional. The 
linear neutral surface of figure 3 is the starting point for nonlinear (super-) harmonic 
bifurcation solutions. Craik’s subharmonic triad resonance is also possible on this 
neutral surface, namely for Re = 11664, a = 1.0881, p = 0.709 and C = 0.2391. 
Starting from this symmetric triad, Shtern (1976) computed the bifurcation curves 
on the linear neutral surface for general triad resonances which are also depicted in 
figure 3 together with their projections. However, owing to symmetry arguments, 
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. ... . . 

FIQURE 2. Modal pattern (n, m) of various solutions; 0 ,  modes excited, x , modes not excited. 
Shaded area marks modal truncation used in present paper. (a),  ( b )  Two-dimensional or three- 
dimensional linearized primary bifurcation solution. ( c )  Two-dimensional primary bifurcation 
solution. (d )  Three-dimensional mean field solution. (e) Three-dimensional primary bifurcation 
solution. (f) Three-dimensional linearized secondary bifurcation solution. (8)  Three-dimensional 
secondary bifurcation solution M("- m). (h)  Three-dimensional secondary bifurcation solution M('.*"). 

Craik's subharmonic triad mechanism is usually regarded as inactive in plane 
Poiseuille flow (see for example Herbert 1988) and will not be pursued in this paper. 

3.2. Neutral two-dimensional nonlinear disturbances 
With Recrit attained for two-dimensional disturbances, historically two-dimensional 
nonlinear extensions of the neutral surface, corresponding to the modal pattern (c) 
in figure 2, have been investigated first. Setting /3 3 0 the total fluctuation energy E 
is usually taken as a measure of nonlinearity. This pulsation energy surface for the 
frequently cited example with N = 2, M = 0, see Zahn et al. (1974) or Herbert (1977), 
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FIGURE 3. Perspective view of three-dimensional linear neutral surface, with ---, subharmonic 
bifurcation curves starting at Craik's triad resonance. 

f" 

i I 0.5 i 
t i  

FIGURE 4. Perspective view and projections of two-dimensional (B = 0) nonlinear equilibrium 
surface E (Re,, a) with K = 20 and N = 2. 

is depicted in figure 4. Various Re, = constant cuts are shown as well as the 
projections of the two-dimensional surface, clearly indicating the strong reduction of 
Recrit. The N = 2 solution is already in qualitative agreement with the results of two- 
dimensional weakly nonlinear theories (cf. Pekeris & Shkoller 1969 or Chen & Joseph 
1973), i.e. the upper linear branch including Recrit is subcritically unstable with a 
finite threshold amplitude while most of the lower branch (for Re, > about 7500) is 
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FIGURE 5. Friction factor cI of the projected two-dimensional equilibrium surface as a function of 
ReQrn for K = 20 and N = 1 and N = 4. x , two-dimensional simulation of Rozhdestvensky & 
Simakin (1984) with N = 4, 0, Pate1 & Head’s (1969) experiment. 

supercritically unstable with a bounded equilibrium solution. However, quantitative 
changes for higher truncations, especially at higher Reynolds numbers, see Milinazzo 
& Saffman (1985) or Ehrenstein & Koch (1989), indicate that the iV = 2 solution has 
not fully converged yet. 

The projection of the two-dimensional neutral surface is shown in figure 5 and 
figure 6 for N = 1 and N = 4 in relation to experimental and two-dimensional 
numerical simulation results. The N = 4 numerical simulation results of Rozh- 
destvensky & Simakin (1984) for the projection of the two-dimensional equilibrium 
surface (their ‘limiting’ flow) as well as the a = 1.25 cut in figure 6 agree quite well 
with our N = 4 bifurcation results. The deviations at lower Reynolds numbers are 
apparently due to the fact that for these low Reynolds numbers Rozhdestvensky & 
Simakin (1984) could only find equilibrium solutions for long-wavelength dis- 
turbances. These correspond to quasi-periodic flows with two or more characteristic 
lengthscales in contrast to our periodic solutions. 

At first sight this good agreement is surprising because in general the simulation will 
not converge to a periodic solution. However, investigating the stability of the above 
two-dimensional finite-amplitude flow to infinitesimal two-dimensional super- 
harmonic disturbances, Pugh & Saffman (1988) found that the upper branch becomes 
stable to constant-pressure gradient disturbances for larger Reynolds numbers. A t  
lower Reynolds numbers they discovered a subcritical Hopf bifurcation in the 
moving frame possibly leading to stable quasi-periodic flows a t  low Reynolds 
numbers which would explain Rozhdestvensky & Simakin’s (1984) long-wavelength 
simulation results. These findings are in general agreement with the two-dimensional 
time-dependent numerical simulations of J imhez  (1987b, 1990), who not only found 
quasi-periodic flows but also evidence of chaos. Jimenez relates the new solutions to 
a bursting phenomenon in the sublayer near the wall which could coexist with three- 
dimensional instabilities in the core of the flow. 
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FIGURE 6. Re, vs. ReQrn for projected two-dimensional equilibrium surface with K = 20, N = 1 and 
N = 4. x , two-dimensional simulation of Rozhdestvensky & Simakin (1984) for N = 4, 0,  
Tillmann’s experiment, see Herbert (1977), A, Eckelmann’s (1970) experiment. Also shown is a 
cut for a = 1.25 with K = 20, N = 4 compared to Rozhdestvensky & Simakin’s (1984) two- 
dimensional simulation results for N = 4. 

To give a general idea of the nonlinear two-dimensional equilibrium solution the 
disturbance streamlines of the two-dimensional lower and upper equilibrium branch 
in the moving system are plotted in figure 7 for the often cited example Re, = 5000 
and 01 = 1.12. 

3.3. Neutral three-dimensional nonlinear disturbances 
With the experimental findings in mind that two-dimensional disturbances soon 
become three-dimensional in transitional flow, it is only natural to investigate three- 
dimensional equilibrium solutions which bifurcate off the linear neutral surface 
depicted in figure 3. The resulting equilibrium surface for three-dimensional 
disturbances is four-dimensional, i.e. (Re, a, p, E ) ,  and it is customary to display the 
solution in cut planes keeping two of the parameters fixed. Using the mean-field 
approach, which allows nonlinear interaction only between the (0,O) and the ( 1 , l )  
mode (cf. modal pattern (d) in figure 2), Grohne (1969) and Zahn et al. (1974) have 
already published extensions to nonlinear three-dimensional disturbances. They 

5-2 
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FIGURE 7. Disturbance streamlines (A$ = &[$ma, - $,,,,,I) of two-dimensional equilibrium surface in 
the moving system for Re, = 5000, a = 1.12 with K = 15 and N = 2. (a )  lower branch, C = 0.2878, 
( b )  upper branch, C = 0.3069. 

observed that these solutions do not lead to a reduced critical Reynolds number and 
that three-dimensionality has a strong stabilization effect. These results were 
confirmed by Koch (1988) but disagree qualitatively with the weakly nonlinear 
results of Dhanak (1983). 
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FIGURE 8. Regions of sub- and supercriticality near three-dimensional neutral curve for 
Re = 8000 (adapted from Dhanak 1983). 

Dhanak (1983) investigated the small-amplitude behaviour of three-dimensional 
disturbances forming standing waves in a spanwise direction by expanding about the 
linear neutral surface. Numerically computing the (Landau) coefficient k,, Dhanak 
(1983) identified the regions of subcritical and supercritical equilibrium solutions in 
the (a,P)-plane for Re < 8000. Here the term subcritical is used in the sense that the 
nonlinear solution, starting on the linear neutral curve extends into the linearly 
stable region implying the existence of a finite threshold amplitude before the 
nonlinear solution becomes unstable. On the other hand, a nonlinear solution is termed 
supercritical if it continues into the linearly unstable region forming a (locally stable) 
finite equilibrium state. Dhanak’s main finding is that the real part of k ,  can vanish 
along two separate curves in the (a,/3)-plane, denoted branch A and B by Dhanak 
(compare figure 8 which has been adapted from Dhanak’s (1983) figure 4). For our 
chosen example with Re = 8000 this means that along the lower branch of the linear 
neutral curve with /3 < BE the nonlinear solution is supercritical, while for /9 > BE it  
is subcritical. 

Figure 9 shows the low-amplitude behaviour of Koch’s (1988) strongly nonlinear 
results for a modal truncation N = M = 1, Re, = 8000 and various a = constant cuts. 
Only the ( 1 ,  1) and (0, 0) modes are excited, which explains the agreement with Zahn 
et aL’s (1974) mean-field solution. Selecting the a = 0.8 cut we see that our N = 
M = 1 result displays a threshold amplitude for /3 < of figure 8 and a finite- 
amplitude equilibrium for /3 > DB. This is just the opposite of Dhanak’s (1983) 
prediction. A similar discrepancy between the weakly nonlinear prediction and the 
N = 1 Fourier truncation for two-dimensional solutions could be corrected by going 
to higher Fourier truncations. Therefore we consider next the truncation N = M = 2. 

In this case only the (0, 0 ) ,  (0, 2), (1, l),  (2,O) and (2, 2) modes are excited forming 
a chess-board-like modal pattern. This modal pattern is similar to the one for 
subharmonic transition observed by May & Kleiser (1985) in their time-dependent 
simulation. And indeed, this solution branch contains the superharmonic resonant 
triad (2a,O) and (a, *I) on the linear neutral surface with a = 0.5506, /3 = 0.709 and 
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FIQURE 9. Small-amplitude behaviour of three-dimensional primary equilibrium surface E ( p )  for 
Re, = 8000 and various a = constant cuts with K = 15 and N = M = 1 .  
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FIQURE 10. Three-dimensional primary equilibrium surface E(@) for Re, = 8000 and various 
a = constant cuts with K = 15 and triangular modal cut off at Y = M = 2. 

Re = 11664. Goldshtik, Lifshits & Shtern (1983) have investigated this triad and 
disappointingly found results similar to the nonlinear two-dimensional branch. In  
this superharmonic solution branch the (0, 2) mode appears to dominate while the 
energy in the (2, 2) mode is negligibly small in most cases. Therefore, in order to  save 
computer time, all following parameter studies for this three-dimensional solution 
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FIQIJRE 11. Small-/? behaviour of three-dimensional primary equilibrium surface E(B) of 
figure 10 with K = 15 and triangular modal cut off at N = M = 2. 

branch have been performed by using a triangular modal cut off, i.e. for N = M = 2 
only the modes (0, 0 ) ,  (0, l),  (0,2),  ( l , O ) ,  (1, 1) and (2,O) have been retained, 
corresponding to modal pattern ( e )  in figure 2 .  The results of this computation are 
shown in figure 10 with an enlargement of the low p region depicted in figure 11. 

Selecting again the a = 0.8 cut in figure 11 we see that we have now a finite- 
amplitude equilibrium for /3 < p B  and a threshold amplitude for @ > pB in agreement 
with Dhanak's (1983) small-amplitude predictions. For the a = 0.73 cut we observe 
a threshold amplitude on both sides of the neutral curve (even though Dhanak did 
not continue his curve B, cf. figure 8, down to a = 0.73 it  looks like the a = 0.73 
is completely to the right of curve B ) .  As can be seen from figure 10 the global N = 
M = 2 results, covering a wide range in the p domain, differ completely from the 
N = M = 1 result of Koch (1988), an indication that probably several more modes 
should be retained for quantitatively correct values. This is not being pursued in this 
investigation because the disturbance energies and friction factors of this solution 
class are comparable to those of the nonlinear two-dimensional solution. Similar to 
the nonlinear two-dimensional solution this nonlinear three-dimensional solution 
serves only as a staging ground for secondary bifurcations, one of which is included 
in figure 10 for a = 1 with the bifurcation points marked by triangles. This secondary 
bifurcation branch connects the nonlinear three-dimensional primary equilibrium 
surface of this section with the two-dimensional primary equilibrium surface of 83.2. 

From numerical simulations and experimental investigations it became apparent 
that secondary instabilities play an important role in the transition process. 
Therefore we shall concentrate in the following on secondary bifurcations and 
nonlinear equilibrium solutions resulting from these. 
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4. Wavelike secondary bifurcation solutions 
The discovery of Orszag & Patera (1980) and Herbert (1981) that the exponential 

growth of small three-dimensional disturbances, observed in time-dependent 
numerical simulations as well as shear-flow experiments, can be explained by a linear 
secondary instability, cf. modal pattern ( f )  in figure 2, of the finite-amplitude two- 
dimensional equilibrium branch constituted a major breakthrough in theoretical 
transition research. The neutral states of these secondary instabilities are the 
bifurcation points for our nonlinear secondary bifurcation branches. Therefore we 
present a t  first a brief review of the linear secondary instability results for plane 
Poiseuille flow. 

4.1. Secondary instabilities 
The periodicity of the nonlinear primary equilibrium state allows the application of 
Floquet or Bloch theory (cf. Herbert 1988), to compute the growth rate of secondary 
instabilities using similar numerical methods as for linear primary instability. 
Investigating two-dimensional secondary disturbances Pugh (1987) and Pugh & 
Saffman (1988) found a much richer picture of possible instabilities than the simple 
stability transition hitherto assumed to hold a t  the nose of the two-dimensional 
nonlinear equilibrium surface. However, for our investigation three-dimensional 
secondary disturbances are of prime interest and corresponding numerical results 
have been published for the lower two-dimensional branch by Herbert (1981, 1984) 
and for the upper two-dimensional branch by Orszag & Patera (1980, 1983). Pugh 
(1987) and Ehrenstein & Koch (1989) gave results for both branches. I n  particular, 
Herbert (1984) has demonstrated that for plane Poiseuille flow the (super-) harmonic 
secondary disturbances can be separated into symmetric 

{V"F( - y), it)( - y), 6;) ( - y)> = ( - 1 {V"2'( + y) , it)( + y), tt)( + y)>, 
{i~)(-y),~t)(-y),~~)(-y)} = (-l)n{i~)(+y),~t)(+y),~~)(+~)}, 

{it)( -Y),&( -?A, $;)( - y)> = (-- {q)( + y), it)( +y), tt)( +y)>, 

and antisymmetric contributions 

{it)( -y), tiy( -y), ?p( -y)> = ( -  l)""(i~'( +y), &p( +y), ?g)( +y)>. 

In the following we consider only (super-) harmonic secondary disturbances and 
most results to be presented will be for the frequently used linearly stable test case 
Re, = 5000 and a = 1.12 (cf. Herbert 1984). 

Figure 12 depicts the temporal amplification rate R e ( a )  of the symmetric 
secondary instability modes on the lower (a)  and upper ( b )  two-dimensional 
equilibrium branch as a function of spanwise wavenumber /3 for N = 1 and K = 20 
collocation points in the half channel. On the lower branch the most unstable 
secondary instability mode, shown by a solid line, is phase locked with the two- 
dimensional wave, i.e. Im (a1) = 0 in the system moving with CzD. Non-phase-locked 
modes represent quasi-periodic solutions and are depicted by dashed lines. For some 
parameters (in particular larger spanwise wavenumbers p) the amplification rate of 
the non-phase-locked modes is much higher than that of the phase-locked modes. 
Despite this, we only include phase-locked modes in the present paper because the 
physical importance of the non-phase-locked modes needs further clarification. The 
detailed growth rates for small /? are shown enlarged in the inserts of figure 12. I n  
particular the behaviour on the upper branch, where a pair of complex conjugate 
non-phase-locked instability modes splits into two unstable phase-locked modes is 
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FIQURE 12. Temporal amplification rate Re (a) of symmetric secondary instability modes on the 
lower (a) and upper (b)  two-dimensional equilibrium branch for Re, = 5000, a = 1.12, K = 20 and 
N =  1. 

interesting and analogous to a similar phenomenon observed by Pugh & Saffmann 
(1988) for two-dimensional disturbances. However, in this paper we are mainly 
interested in the points where the phase-locked modes become neutral, i.e. points 
A1 and B1 on the lower two-dimensional branch or points C1 and D1 on the upper 
two-dimensional branch. 
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FIQURE 13. Temporal amplification rate Re (a) of symmetric secondary instability modes on the 
lower (a) and upper ( b )  two-dimensional equilibrium branch for Re, = 5000. a = 1.12, K = 20 and 
N = 2 .  

Increasing the truncation to N =  2 we obtain the situation shown in figure 13. 
While the behaviour on the lower branch is similar to the one for N = 1 we notice 
important qualitative changes on the upper branch for N = 2 : several additional 
unstable modes appear and of particular interest is a second unstable phase-locked 
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mode u2 with neutral points a t  E2 and F2. The antisymmetric secondary instability 
modes, not displayed here, show similar behaviour, with the exception that the 
phase-locked modes u1 and u2 are interconnected on the upper branch for the 
parameters chosen. 

Orszag & Patera (1983) noted that positive secondary-instability growth rates exist 
for all combinations of Re and a on the upper two-dimensional branch and even 
below the corresponding nonlinear critical Reynolds number. To make such 
assertions about secondary instabilities for Reynolds numbers below RecritzD they 
used what they termed two-dimensional quasi equilibria in conjunction with a shape 
assumption. This rather heuristic procedure rests upon the hypothesis that these 
two-dimensional quasi-equilibrium states evolve rather quickly after which the flow 
decays slowly through viscous relaxation (cf. Bayly et al. 1988). Choosing the quasi 
equilibria to have the same form as the exact two-dimensional equilibrium wave on 
the upper branch a t  Re, = 4000 and a = 1.25 but with a different amplitude factor 

they computed contours of equal growth rate of secondary instabilities as a 
function of Reynolds number and two-dimensional quasi-equilibrium wave am- 
plitude. This way they obtained an approximate threshold Reynolds number in the 
vicinity of 500. This remarkable result stimulated us to investigate the exact three- 
dimensional secondary bifurcation branches to be discussed in the next section. 

To allow a certain qualitative comparison with the following exact results, we also 
applied the above-described approximate method in figure 14. However, we chose 
as reference solution for eeqU the exact two-dimensional equilibrium waveform on the 
upper branch of our test case Re, = 5000 and a = 1.12. Figure 14 shows equal 
secondary amplification contours for variable eShape and (a) variable Re, with fixed 
,8 = 2 and ( b )  variable ,8 with fixed Re, = 5000. The zero growth-rate curve Re (u) = 0 
was expected to  give an approximate picture of the exact secondary equilibrium 
surface for symmetric phase-locked modes to be computed in the next section. The 
approximate character of the solution in figure 14 can already be seen from the fact 
that the Re (u) = 0 curve does not pass through the neutral point B1 on the lower 
two-dimensional branch. For comparison the exact nonlinear two-dimensional 
domain is shown shaded in figure 14(a) indicating that secondary bifurcation 
branches might lead to much lower critical Reynolds numbers. The rather unusual 
lobed form of the neutral curve Re (u) = 0 in figure 14 ( b )  is due to the appearance of 
the second unstable phase-locked mode u2. 

4.2. Wave-like secondary bifurcation solutions 
In  this section we shall investigate mainly symmetric wave-like secondary bifurcation 
solutions which constitute the most important results of this investigation. These 
solutions bifurcate a t  the neutral points of phase-locked secondary instability modes 
on the nonlinear primary bifurcation surface. Although secondary bifurcations exist 
on the nonlinear three-dimensional equilibrium surface of 53.3 (see for example the 
branch for a = 1 bifurcating a t  the points marked by triangles in figure 10) we shall 
concentrate on those solutions which bifurcate from the nonlinear two-dimensional 
primary equilibrium surface, because the corresponding bifurcation points can be 
computed easily via linear secondary instability theory. We shall limit ourselves to  
the discussion of symmetric and antisymmetric secondary bifurcation branches, 
defined by (7) and (8) in the half-channel. Asymmetric secondary bifurcation 
solutions, as well as interactions between these solutions, require computations in the 
whole channel (cf. the example for N = M = 1 presented in Ehrenstein & Koch 1989) 
and are excluded here. 
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FIGURE 14. Contours of equal (symmetric) secondary instability growth rate Re ( r ~ )  on quasi- 
equilibrium waves for a = 1.12, K = 20 and N = 1 as function of wave amplitude and ( a )  Reynolds 
number Re, with fixed B = 2 and ( b )  spanwise wavenumber /3 with fixed Re, = 5000. 

The secondary instability computations of the previous section indicate that point 
D2 of figure 13 is a bifurcation point for symmetric and antisymmetric modes. I n  
Ehrenstein & Koch (1989, 1991) we performed a local bifurcation analysis of the 
whole-channel problem near this bicritical point D2. We showed that the symmetric 
and antisymmetric solution branches do not interact locally, lending some 
justification to  our separate treatment of symmetric and antisymmetric solution 
branches. This fact is a consequence of the symmetry properties of the nonlinear 
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system stated in $2. Owing to  the existence of multiple or disconnected solution 
branches the following results are to  be considered only as first examples to help 
understand the rather intricate bifurcation structure. No claim for completeness is 
made and perhaps other more important branches still exist. 

Even with our symmetry assumptions there is a multitude of phase-locked 
bifurcation points, as is evident from figure 13. In the present paper we limit our 
results mainly to two families of secondary bifurcation branches. The first family 
produces what we term M(n.m) branches and contains all Fourier modes represented 
by the modal pattern (9 )  of figure 2. I n  the second family, termed M(n,zm)  and 
described by modal pattern (h)  in figure 2, only even spanwise harmonics are excited. 
The M(”3 2m) branches therefore constitute a spanwise superharmonic solution. To 
display the main properties of these branches we chose E ,  /3 cuts for our model 
example Re, = 5000 and a = 1.12. This example corresponds to the one used in figure 
14(b) and clearly reveals the relation of the bifurcation points to the zero 
amplification points in figure 13. Practically all calculations have been performed 
using the truncation N = M = 2. 

4.2.1. Secondary bifurcation solutions M(n* m, containing all Fourier modes 
The bifurcation points of the M(nym) solutions, cf. modal pattern (9) of figure 2, are 

simply the points of zero secondary amplification rate on the nonlinear two- 
dimensional equilibrium surface as investigated in $4.1. In  particular, we concentrate 
on the points B and D of figures 12 and 13 which are also marked in figure 14(b). For 
our linearly stable subcritical model example Re, = 5000, a = 1.12 the corresponding 
exact global bifurcation results are shown in figure 15 for various truncations. (The 
results for Re, = 8000 and a = 1 in figure 10 give an idea of what the global M(n.m)  
branch looks like for a linearly unstable case. I n  this particular example the three- 
dimensional solution bifurcating from the two-dimensional upper branch ends on the 
three-dimensional equilibrium surface of $ 3.3 instead of the two-dimensional lower 
branch as in the subcritical case). 

From figure 15 we see that the fluctuation energy E of the exact bifurcation result 
reaches a maximum at the two-dimensional upper branch point D and a minimum 
a t  the lower branch point B, which is a t  variance with the approximate result of 
figure 14. A local analysis shows (cf. Ehrenstein & Koch 1989, 1991) that both 
bifurcation points correspond to pitchfork bifurcations such that the three- 
dimensional branches are actually covered twice which does not show in the 
projection of figure 15. From figure 15 we see also that in agreement with the local 
results, the solution truncated a t  N = M = 1 is qualitatively different from the 
solution with higher truncation, i.e. the N = M = 1 branch bifurcates to  higher values 
of /3 while the higher truncations bifurcate to lower values of /I. The N = M  = 2 
solution seems to  be already fairly close to  the N = M = 3 solution and we notice 
again that a t  least N = M = 2 modes have to be kept to get a qualitatively correct 
picture. I n  order to keep the computing time at a reasonable level we use the 
N = M = 2 truncation in all following results. 

The symmetric M(n*m) branch bifurcating at D2 and B2 is reproduced in figure 
16(b). Figures 16(a) and 16(c) depict the variation of this branch with different 
streamwise wavenumbers a a t  the same Reynolds number Re, = 5000. These results 
all have in common, that the fluctuation energy E as well as the corresponding 
friction factor cf reach a maximum a t  the two-dimensional upper branch, i.e. a t  point 
D2 in figure 16(b). However, we hasten to add that we also computed antisymmetric 
M(n*m) branches which are not shown here. While these antisymmetric M(n*m) 
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FIGURE 15. Re, = 5000, u = 1.12 cuts through symmetric secondary M(",'") equilibrium surface 
of the most unstable mode v1 with K = 15 and various truncations N = M. 

branches seem to follow the symmetric M ( n - m )  branches fairly closely over most of the 
parameter range, rather large deviations occur near the upper two-dimensional 
branch. These deviations are very similar to those observed for the 2m)  branches 
to be discussed in the following section. The fluctuation energy as well as the friction 
factor of the deviating parts of the antisymmetric solution, which can even form 
isolated branches, reaches values which are considerably above those of the nonlinear 
two-dimensional solution. Therefore we cannot exclude the existence of isolated 
symmetric M(n*m) branches with higher cf values. If such isolated symmetric M(n*m) 
branches exist, they can only be reached via different parameter combinations. This 
matter is still to  be investigated further. From the results obtained so far we conclude 
that the M(n*2m) solutions, to be discussed in the next section, arc more important 
from a physical point of view. 

4.2.2. Secondary bifurcation solutions M("* 2m) containing only even spanwise Fourier 
modes 

In  the search for solution branches with higher cf values we investigated higher- 
order bifurcation points. Excluding the whole-channel problem, bicritical points, i.e. 
points where two neutral secondary instability modes coincide, turned out to exist 
also within the class of symmetric (and antisymmetric) solutions if one truncates a t  
N = M 2 2. The second unstable phase-locked mode g2 of figure 13 (b )  seemed to be 
an especially promising candidate for achieving such a coalescence. Therefore, 
truncating a t  N = 2 and keeping Re, = 5000 fixed, we varied a and /3 but could not 
find any (a,p) combination for which the neutral points E2 and D2 of figure 13 
coincided. 

Another possibility for the creation of bicritical points are superharmonic 
bifurcation branches. Truncating at least a t  N = M = 2 the first spanwise harmonic (i.e. 
m = 2) phase-locked neutral mode of u1 bifurcates a t  point D2/2 in figure 16(b) with 
$g?Pneut(~l) being half the p-value of point D2. Point D2/2 is fairly close to the neutral 
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FIGURE 17. Curves of zero growth rate of the fundamental second unstable phase-locked mode 
/3neu,(~p) and the first spanwise harmonic of the first unstable phase-locked mode Vneut(rl) on the 
nonlinear two-dimensional equilibrium surface for Re, = 5000, K = 15 and N = 2. The four 
bicritical points are marked B,, . . . , B,. 

point E2 of the second phase-locked mode u,. Therefore we tried next to vary the 
parameters Re, and a such that these two neutral modes coincide. 

We have done this in figure 17 by fixing Re, = 5000 and varying only a as follows : 
the nonlinear two-dimensional equilibrium surface for Re, = 5000 is a cylinder with 
its axis parallel to the p-axis and extending over the indicated a,,, range. The cross- 
section of the cylinder is shown on the left-hand side of figure 17. Fixing at  first 
a = 1.12 = constant, the points where the second phase-locked mode r2 becomes 
neutral are F2 and E2 on the two-dimensional upper branch marked by triangles on 
the line a = 1.12 = constant. Halving the p values of D2 and B2, where the first 
phase-locked mode r, has zero growth rate, we obtain the two points D2/2 on the 
two-dimensional upper branch and B2/2 on the two-dimensional lower branch 
indicated by circles. If we perform the same procedure for different U-values and 
connect the corresponding points in the (a,P)-plane of figure 17 we find two curves 
on the two-dimensional equilibrium cylinder : the solid curve /3neut(r2) is the 
projection of the bifurcation points of the Mnvrn) branch corresponding to the r, 
mode. The dashed curve ipneut(rl) represents the projection of the M(n,2rn)  branch 
corresponding to the u1 mode. We observe that for these parameters there exist four 
intersection points B,, B,, B, and B, of the solid curve with the dashed curve on the 
two-dimensional equilibrium cylinder. These four points are marked by squares in 
figure 17 and constitute bicritical points. The two points B, and B, lie on the upper 
two-dimensional branch, B, is on the lower two-dimensional branch and B, is more 
or less at  the connection of these two branches. 

A local bifurcation analysis for point B, (a z 1.1485, p x 7.47) via Lyapunov- 
Schmidt reduction showed interesting results (cf. Ehrenstein & Koch 1989, 1991) 
with possible mode interactions between theiWn- m, andMn* 2m) branches. The results 
of the global bifurcation analysis are shown in figure 16 for Re, = 5000. Fixing a t  first 
a = 1.12 (cf. figure 16b), we see that the spanwise superharmonic M(n.2rn) branch of 
r,, bifurcating a t  D2/2 and depicted as solid curve, looks similar to theM(n.rn) branch 
of r,, bifurcating at D2 and treated in the previous section, with the exception of a 
large ‘ bulge ’ near point D2/2. This ‘bulge ’ drew our particular attention because the 
friction factor cp of this part of the M(,, 2rn) branch surpasses by far the nonlinear two- 
dimensional values even though the fluctuation energy E in figure 16(b)  remains 
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FIQURE 18. Friction factor cf aa function of Reg, for various cuts through the secondary equilibrium 
surface M("szm) of ul with K = 15 and N = M = 2. The approximate extent of the projection of the 
four-dimensional M(n*zm) surface is indicated by the shaded area. ---, projection of two- 
dimensional equilibrium surface for N = 2, M = 0, x , three-dimensional low resolution simulation 
of Rozhdestvensky & Simakin (1984) with N = M = 4, A, high resolution simulation of Gilbert 
(1988) with N = M = 128, 0,  Pate1 & Head's (1969) experiment. The various cuts are: 0 Re, = 
5000, a = 1.12; a Re, = 5000, /3 = 4; a and @ Re, = 4500, a =  1.12; (3 Re, = 3000, = 4; @ 
a = 1.25, /3 = 6.25; 8 a = 1.3, /3 = 5.5; @ a = 1.25, /3 = 4 ;  @ a = 1.4, /3 = 4;  @ a = 1.85, /3 = 4. 

below the two-dimensional value. This is demonstrated in figure 18, where the 
M("* 2m)  branch 0 of figure 16 (b)  extends from the lower two-dimensional branch all 
the way up to the point near the turbulent value marked by a star, before ending on 
the upper two-dimensional branch. On the other hand the M("sm) mode of n2, 
bifurcating at  point E2 on the upper two-dimensional branch, see figure 16 (b ) ,  ends 
on the M(n*2m) branch 0 near the lower two-dimensional branch. However, the 
corresponding ce values remain below those of the two-dimensional equilibrium 
solution. 

If we now vary a, say a = 1.05 in figure 16(a) or a = 1.2 in figure 16(c), we see that 
the M(n.2m) branch @ of figure 16 (b )  can be continued to isolated branches which all 
have the remarkable property that the friction factor cf of this isolated section can 
reach values far above those of the two-dimensional solution. We therefore believe 
that the M(". 2m) branches might be of importance in the transition process and could 
lead to a better transition criterium. 

In addition to the Re, = 5000 and a = 1.05, 1.12, 1.2 cuts we computed various 
other cuts through the four-dimensional equilibrium surface. These various cuts are 
marked by encircled numbers in the Ce, ReQm plot of figure 18. The corresponding 
curves are also shown in figure 19 where Re, is plotted as a function of ReQ,. The 
approximate extent of the projection of the four-dimensional M("* 2m)  surface of the 
nl mode is outlined by the shaded area in both figures and allows a comparison with 
experimental and time-dependent simulation results. For completeness the pro- 
jection of the two-dimensional equilibrium surface with N =  2 is also included as 
dashed curve. 
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FIQURE 19. Re, us. Re, for various cuts through the secondary equilibrium surface M(n,Pm) of CT~ 

with K = 15 and N = i# = 2. The approximate extent of the projection of the four-dimensional 
M(”lZm) surface is indicated by the shaded area. ---, projection of two-dimensional equilibrium 
surface for N = 2, M = 0. x , three-dimensional low resolution simulation of Rozhdestvensky & 
Simakin (1984) with N = M = 4, 0 ,  Tillmann’s experiment, see Herbert (1977), A, Eckelmann’s 
(1970) experiment. Cuts as in figure 18. 

The M(n.2m) solutions of the first unstable mode C T ~  apparently only exist for higher 
values of p and hence a direct comparison with a time-dependent simulation cited in 
the literature was possible only for Rozhdestvensky & Simakin’s (1984) low 
resolution (N = M = 4) result for Re, = 5000, a = 1.25 and = 4. Our corresponding 
result for cf with N = M = 2 is the intersection of line Q with curve @) in figure 18 
which is fairly close to the cross marking Rozhdestvensky & Simakin’s (1984) chaotic 
solution. In  addition we note that in figure 18 some of our solutions like cut Q or cut 
@ lead to cf values which are considerably above the turbulent cf values. One reason 
for this ‘overshoot ’ could be the insufficient number of retained Fourier modes, i.e. 
N = M = 2. On the other hand this could be an actual property of this family of 
‘vortical’ states. As will be documented later, the streamwise mean flow profiles of 
these M(nv2m) solutions show a certain similarity with the mean flow profiles of 
Gilbert’s (1988) simulation results during the spike stage. In his time-dependent 
simulation Gilbert also observed an overshoot of cf during the spike stage, see 
Gilbert’s (1988) figure 7. In  general we observe that the cf values of theM(n*2m) branch 
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FIGURE 20. Friction factor cf as function of ReQrn for various cuts through the secondary equilibrium 
surface M(n.2m) of u2 with K = 15 and N = M = 2. Comparison with x , the low-resolution (N = 
M = 4) simulation of Rozhdestvensky & Simakin (1984) and 0, Patel & Head's ( 1969) experiment. 

of v1 are surprisingly close to the turbulent mean values and that the critical 
Reynolds number of this solution class is reduced considerably, reaching ReQrn - 
1000 which agrees with the experimentally observed values. Furthermore, all these 
three-dimensional equilibrium solutions show a strong subcritical character with 
rather high threshold amplitudes. 

The restriction of M(n.2m) solutions to higher values of /3 in Ehrenstein & Koch 
(1989) can be eliminated by including the Men* zm) branches of the second unstable 
phase-locked mode v2 bifurcating a t  & e u t ( ~ 2 ) .  Several such cuts through the four- 
dimensional M(ns2m) equilibrium surface of g2 have been computed and are shown in 
figure 20. With these results for lower values of /3 a comparison with the chaotic 
results of Rozhdestvensky & Simakin (1984) is possible. (We only note that contrary 
to our N = M = 2 truncation they truncated at N = M = 4.) This comparison is 
shown in figure 20 for three examples. Although such a comparison does not make 
sense in general because we are comparing a periodic solution with a chaotic solution, 
such a comparison is of considerable interest if one wants to find a better transition 
criterion which uses the simplest possible solution. In  this sense we note that our 
periodic results, marked by circles in figure 20, are surprisingly close to the 
experimental results of Patel & Head (1969), marked by squares, as well as to the 
numerical simulation results of Rozhdestvensky & Simakin (1984), marked by 
crosses. 

To gain additional insight we plotted the spanwise and streamwise averaged 
disturbance streamlines (in the moving frame of reference) together with the mean 
velocity profiles for various secondary equilibrium branches. The spanwise averaged 
(i.e. keeping only the (n, 0) Fourier modes) disturbance streamlines closely resemble 
those of the two-dimensional solution, i.e. figure 7 .  The streamwise averaged (i.e. 
keeping only the (0, m) Fourier modes) disturbance streamlines clearly demonstrate 
the essential difference between Men. m, and M'", zm)  solution branches. A typical 
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FIGURE 21. Streamwise averaged disturbance streamlines (A$ = &[$m8x-$,,,,n]) for Re, = 5000, 
K = 15 and N =  M = 2: (a) M("-m) solution corresponding to conditions Y in figure 16(b) with a = 
1.12, B = 14, E = 2.015 x C = 0.2974. (b) M ( " Z * ~ )  solution corresponding to a = 1.8, p = 4, 
E = 9.303 x C = 0.2195. 

M(n,m) solution, corresponding to the conditions denoted by Y in figure 16(6), is 
depicted in figure 21 (a).  Characteristic are the two streamwise vortices per spanwise 
wavelength. The corresponding mean velocity profile, depicted in figure 22 (a) ,  is still 
very similar to the one for the two-dimensional upper branch solution. 
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FIQURE 22. -, mean velocity profiles u,(y) for Re, = 5000: (a) M(n*mn, solution corresponding to 
conditions Yin figure 16(b) with a = 1.12, B = 14, E = 2.015 x C = 0.2974. (b)M(n*zm) solution 
corresponding to a = 1.8, B = 4, E = 9.303 x C = 0.2195. Also included are the laminar flow 
parabolas for -.-, equal pressure gradient and ---, equal flux. 
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Contrary to this the M(n* zm)  solutions, being spanwise harmonics, contain twice as 
many streamwise vortices per spanwise wavelength. This is demonstrated by the 
example of figure 21 (b ) .  It is extremely interesting to note that the mean flow profile 
of this M(n*2m) solution, depicted in figure 22 ( b ) ,  has a certain similarity with the 
profiles observed by Gilbert (1988) during the ‘spike ’ stage in hi3 time-dependent 
numerical simulation. This similarity is also apparent in the streamwise averaged 
streamline pictures of figure 21. The M(nvm) solution of figure 21 (a )  is characteristic 
for the initial stage of transition, while the M(nv2m) solution of figure 21 ( b )  is similar 
to Gilbert’s (1988) streamline plots (his figure 18) during the ‘spike’ stage. The 
number of streamwise vortices per channel cross-section varies for different branches, 
however no classification has been attempted here. A further characteristic of the 
‘spike’ stage, namely the dominance of the (0 ,2)  mode (compare Gilbert’s (1988) 
figure 11)  is also found in M(n.2m) solutions. Therefore in our opinion the M(n*2m)  
solution branches are somehow related to the ‘spike ’ stage of transition and might 
potentially be used for obtaining a more physically relevant transition criterion. 

We conclude with a final remark, concerning the observation that the projections 
of the M(n*zm)  solutions in figures 18 and 20 do not cover the transitional regime 
below Reg, x 1000. As observed by Nishioka & Asai (1985) only intermittent flow 
has been found in this regime and perhaps no periodic equilibrium solutions are 
possible there. However quasi-periodic solutions might exist, requiring a solution for 
non-wavelike equilibrium branches as suggested by Pugh (1987). These solutions 
correspond to the non-phase-locked secondary instability modes shown in figure 13, 
but are much more difficult to  compute. 

5. Conclusions 
Using Keller’s (1977) pseudo-arclength continuation procedure, nonlinear three- 

dimensional travelling-wave type equilibrium solutions have been computed for 
plane Poiseuille flow. These travelling-wave type solutions originate a t  the neutral 
points of phase-locked secondary instability modes on the nonlinear primary 
bifurcation branch. Taking advantage of symmetries, only the solution branches 
corresponding to the symmetric and antisymmetric secondary instability modes 
have been considered. Of particular interest is the discovery of a new family of 
secondary bifurcation branches, termed M(n-  2 m ) ,  which contains only even spanwise 
Fourier modes. Largely dominated by the (0, 2) mode, thest: M(n*2m) solution 
branches raised the friction factor substantially to experimentally observed levels 
and a t  the same time reduced the critical Reynolds number to  ReQrn x 1000. 
Furthermore, these new equilibrium solutions show characteristics usually observed 
during the ‘spike’ stage of transition and therefore are of potential use for improved 
transition prediction. 

A distinctive feature of the new M(nq2m) equilibrium solutions is that they contain 
twice as many streamwise vortices per spanwise wavelength as the M(ns m ,  equilibrium 
solutions. The friction factor of the M(”. 2m)  branches is in general higher than that of 
the M(n.m) branches. Apparently the decreased vortex spacing is the reason for the 
higher friction factor of the M(n*2m) solutions. It is therefore plausible to assume that 
a reduction of the friction factor could be accomplished by suppressing the M(nv2m) 
solution and forcing the M(nqm) solution. Perhaps this could offer a possible 
explanation for the effect of drag-reducing riblets, which apparently also increase the 
spacing of low-speed streaks in the near-wall region, cf. Bacher & Smith (1986). At 
present this observation is rather speculative and not substantiated by any 



Three-dimensional wavelike equilibrium states 145 

experimental results in plane Poiseuille flow. However the bifurcation analysis is 
presently being extended to two-dimensional boundary-layer flows where a 
comparison with experimental results might be possible. 

The authors are indebted to Dr L. Kleiser and Dr T. Fischer for stimulating and 
helpful discussions, especially at the beginning of this study, and to Mr L. Leopold 
for producing the many computer plots. Also the constructive criticism of the 
referees is gratefully acknowledged. 
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